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METHOD FOR PREDICTING COMPRESSIBLE TURBULENT
BOUNDARY LAYERS IN ADVERSE
PRESSURE GRADIENTS

By S. Z. Pinckney
Langley Research Center

SUMMARY

In connection with research programs on hypersonic airbreathing propulsion, an
integral method for predicting boundary-layer development in transition and turbulent-
flow regions on two-dimensional or axisymmetric bodies has been developed through use
of the integral-momentum, moment-of-momentum, and energy equations together with
appropriate auxiliary equations. The method has the capability of predicting nonequilib-
rium velocity distributions. It employs some simplifying assumptions, such as flat-plate
friction and heat-transfer coefficients, no provision for a normal-pressure gradient, and
perfect-gas relations; therefore, the method is considered interim in nature.

Extensive comparisons have been made with data covering a wide Mach number
range, cooled and uncooled walls, two-dimensional and axisymmetric bodies with and
without regions of longitudinal-pressure gradient, and a few cases with strong normal-
pressure gradients. The overall conclusion is that the method will predict the displace-
ment, momentum, and boundary-layer thickness of the data within the limits of the exper-
imental accuracy.

INTRODUCTION

Interest in hypersonic vehicles employing airbreathing propulsion has increased in
recent years as a result of several studies describing a number of promising applications.
A general summary and the evaluation of these studies are given in reference 1, and one
of the applications, the reusable airbreathing booster, is discussed in some detail in ref-
erences 2 and 3. Before any of these vehicles can become operational, however, several
technology advances have to be achieved, particularly in the area of integrated engine
concept development. A critical part of this work is the design and performance predic-
tion of hypersonic inlets, which require adequate methods for predicting boundary-layer
growth on the surfaces. In particular these boundary layers are developed in the pres-
ence of positive and negative pressure gradients.
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In selecting or generating a design tool the engineer sometimes must make a com-
promise choice between the high potential accuracy and detail of one method and the sim-
plicity and convenience of a less accurate and less complex one. This situation particu-
larly pertains to boundary-layer-prediction methods which are applicable to flows in
pressure gradients and for which the choices cover a very large range; pertinent com-
ments by a select panel of specialists on the subject are contained in reference 4, where,
for instance, advocates of both finite difference and integral techniques present argu-
ments. Similarly, in reference 5 the relative merits of various finite-difference and
integral techniques are discussed. Finite-difference methods inherently can produce
much detailed information on the boundary layer, and much progress has been made in
recent years in formulating these methods (for example, refs. 6 to 9). It is also evident
that detailed information can be generated with integral methods (for example, refs. 10
to 12). Since the technology for transitional and turbulent boundary layers still is being
developed and major features are still empirical, the type of method selected to perform
a given job depends on the nature of the calculation required. The detailed assumptions
that are made in any particular method are the important considerations. In this regard
a general review is made of some of the integral methods that have been used in hyper-
sonic inlet work, and problem areas encountered are noted.

The first step in a prediction method is to compute the laminar boundary-layer
development up to the point where transition is initiated; this point generally is selected
by using available data as a guide or using an empirical criterion. Several laminar
methods such as reference 13 are available, In the transition region the simplest pro-
cedure is to assume that the entire transition from laminar to turbulent flow occurs in
the plane where transition is initiated while one integral parameter, such as the displace-
ment thickness (ref. 13), remains constant. Another approach would be to allow transi-
tion to extend over a finite length of surface (ref. 14). In the turbulent region a relatively
simple procedure is to perform a simultaneous solution of the integral-momentum and
energy eguations with assumptions of flat-plate friction and heat transfer, equilibrium
flat-plate velocity profiles, and the Crocco temperature-velocity profile (refs. 13 to 15).
In a pressure gradient the methods of references 13 to 15 are unable to predict accurately
either the boundary-layer velocity profiles or total mass in the boundary layer. In con-
trast to the methods of references 13 to 15, another approach to the problem consists of.
the simultaneous solution of the momentum and moment-of-momentum equations as pre-
sented in reference 16. In order to express the moment-of-momentum equation in terms
of the form factor, power-law velocity profiles were used, a functional relation between
the shear stress integral and the form factor was assumed, and integrals of the enthalpy
profiles were assumed to have the same functional relation to the form factor as in lam-
inar flows. With the inclusion of the moment-of-momentum equation, the method of ref-
erence 16 did include provisions for nonequilibrium velocity profiles. In reference 16




the ability to predict nonequilibrium velocity profiles and the inclusion of the shear stress
integral as a function of the form factor results in better velocity profile and boundary-
layer mass-~flow predictions. However, with surface heat transfer the simultaneocus solu-
tion must be accomplished with the inclusion of the snergy equation. In the study of ref~
erence 17 it was concluded that provisions for nonequilibrium velocity profiles were
needed to obtain accurate predictions of the data; also, previous work (ref. 18) has indi-
cated that a modification of the Crocco-type relation for the temperature profile pro-
vides higher accuracy.

The purpose of the present paper is to present an integral method for boundary-
layer prediction through the transition and turbulent regions of two-dimensional or axi-
symmetric bodies. The method was developed during the course of a hypersonic-iniet
research program with particular emphasis on applicability to the computation of bound- "
ary layers in the presence of inlet-type pressure gradients. Some preliminary results
from the inlet experiments and comparisons with predictions using an early version of
the boundary-layer method are given in reference 17, which discusses deficiencies of the
initial method as determined by comparisons with the data. With these deficiencies in
mind the initial version was modified so as to overcome these problems. The resulting
method requires the simultaneous solution of the integral-momentum, moment-of-
momentum and energy equations. It includes the ability to calculate nonequilibrium
boundary-layer velocity profiles and also includes the modified Crocco-type relation for
the temperature-velocity profile relation of reference 18. Although the present method
is somewhat more complex than the initial version, as discussed previously, it still
retains several simplifying assumptions, such as ﬂat-plate friction, shear stress profile,
and heat transfer, and no provision for a normal-pressure gradient. Also, all work to
date has been limited to the perfect-gas regime of conventional aerodynamic wind tunnels,
and the method has not been converted to real-gas relations. The effects of these
assumptions are still under study, and the present version is considered interim in
nature. The present method is used to predict distributions of displacement, momentum,
and boundary-layer thickness along with velocity profiles.

SYMBOLS
A1,Ag constants of equation (12)
B constant in local shear relation (eq. (A21))
C function in equation (13) that depends on local integrated values of total

energy and momentum deficiencies
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2
p5u6/2

specific heat at constant pressure

local friction coefficient,

function defined by equation (A23)
correlation function given by equation (B3) .
function given by equation (C4)

static enthalpy

constant in boundary-layer equation (I = 0 for two-dimensional flow; I=1
for axisymmetric flow)

parameter representing (K + pxe)

Mach number

Prandtl number

local static pressure

heat transfer at wall

Reynolds number

body radius

coordinate along body surface in direction of flow
temperature

local velocity parallel to body surface in direction of flow
local velocity normal to body surface

Cole's wake function




X coordinate in free-stream direction

y coordinate normal to body surface

Z Karman function in modified Spalding-Chi heat transfer method of refer~
ence 6

) boundary-layer thickness

o* displacement thickness

€ eddy viscosity

0 momentum thickness

K thermal conductivity

Ke eddy thermal conductivity

il viscosity

P density

T local shear

@ energy thickness

w angle between body surface coordinate and free-stream direction

Subscripts:

aw adiabatic wall

i inviscid

crit point at which transition is assumed to begin

l length of boundary-layer development




lam laminar-boundary-layer value

t stagnation value

tr transitional-boundary-layer value

turb turbulent-boundary-~layer value

w wall value

5 boundary-layer-edge value

g based on momentum thickness

1,2 upstream and downstream stations, respectively

ANALYTICAL METHOD

Governing Equations

The flow of a compressible, viscous, heat-conducting fluid can be described by the
continuity, Navier~-Stokes, and energy equations. The boundary-layer equations may be
derived from these equations for a viscous heat-conducting flow by substitution of mean
and fluctuating parts for instantaneous flow variables, application of the Reynolds time-
averaging process and, finally, neglecting higher-order terms (ref. 19). The resulting
equations are valid for laminar, transitional, or turbulent boundary layers. If (dp/ dy)y

is assumed zero, and the body radius is assumed large relative to the boundary-layer
thickness, the boundary-layer equations for two-dimensional or axisymmetric time steady
flow are given by the following expressions:

Continuity:
pu , pv  Ipudr _, (1)
ds oy r os

Momentum:

PATA- AL ) A (2)
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Energy equation:

pu_a_h.+pv-a-l—'1-=u—a-—p—+7—a—l-l-+—§——l—<——a—l‘l‘ (3>
as ay as 9y Bycp 9y

where it is assumed that

T=(u+ pe)% (4)

and
K= (K + PKe) ‘ (5)

In the present method the continuity equation is combined with the momentum and
energy equations and integrated across the boundary layer to produce integral forms for
the momentum and energy equations. In addition to integral forms of the momentum and
energy equations, another integral equation is generated by multiplying the momentum
equation by the normal distance from the surface as a weighting function, combining the
resulting equation with the continuity equation, and integrating across the boundary layer
to form what is known as the integral moment-of-momentum equation. The details of the
derivation of the integral-momentum, moment-of-momentum, and energy equations are
given in appendix A where the assumption is made that vy = 0. The integral equations
are:

Integral-momentum equation:

5*

2 + 2
de ( Fgdus 1 %5 1ar| 1 Ty °t
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Integral moment-of-momentum equation:
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In equations (6) to (8), the following equalities are assumed:
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where it has been assumed that the thermal-boundary-layer thickness equals the velocity-
boundary-layer thickness.

The laminar-boundary-layer predictions presented herein were generated through
the use of the similarity method of reference 13. However, any reliable laminar-
boundary-layer method could be used as long as it gives values of the momentum thick-
ness, the energy thickness, the laminar-boundary-layer friction coefficient, and the ratio




of momentum to boundary-layer thickness, all of which are needed at the point where
transition is assumed to begin. The transitional- and turbulent-boundary-layer predic-
tions presented were generated through the simultaneous solution of equations (6) to (8).
Thus, the procedure followed when a complete boundary-layer solution (laminar, transi-
tional, and turbulent) is desired consists of first obtaining a solution for the laminar
region by use of an acceptable laminar boundary-layer method. Then, at the station
where transition is assumed to begin, the transitional prediction method herein matches
the laminar-boundary-layer parameters cg, 6, 6/6, and ¢ as obtained by the output
of the laminar-boundary-layer program. The station at which transition begins has to be
assumed but the end of transition, and thus the beginning of the turbulent region, is deter-
mined by the present method. The end of transition is taken to be the station where the
computed transitional friction coefficient is 90 percent of the corresponding turbulent-
friction coefficient. The turbulent~-boundary-layer prediction then proceeds from this
point to the end station of interest.

Avuxiliary Relations for Turbulent-Boundary-Layer Solution

In order to obtain a simultaneous solution of equations (6) to (8) which is valid for
turbulent boundary layers, auxiliary relations must be developed for the local-wall fric~
tion coefficient, the local-wall heat transfer, the boundary-layer velocity profiles, the
boundary-layer temperature~velocity relation, and the shear distribution across the
boundary layer. The flat-plate Spalding-Chi friction (based on Ryg) and the modified
Spalding~Chi heat-transfer methods of references 20 and 21 are assumed to represent
the local-wall friction and the local-wall heat transfer. In a positive pressure gradient.
the wall shear decreases from the Spalding-Chi value as the pressure gradient increases;
therefore, the Spalding-Chi wall shear is the maximum possible wall shear in a positive
pressure gradient.

A modified version of the equilibrium flat-plate log-log type velocity~-profile rela-
tion of reference 22 is assumed to represent the boundary-layer velocity profile. The
flat-plate boundary-layer velocity-profile relation of reference 22 was modified in order
to approximate the pressure gradient effect on the velocity profile. The resulting
velocity-profile relation is given by

1.0 1/2
f-l/zd-‘L:AlE-f- -Ag log Ji2-w (12)
P U 2 €5

u/u

The parameter w is Cole's wake function as given in reference 23. Examination of
equation (12) reveals that the term Ag loge% approaches zero as y/8 approaches 1.0

and the value of w approaches zero as y/d approaches zero. Therefore, the term




Ag loge % becomes the dominant term as the wall is approached and w is dominant in

the wake region. Examination of compressible turbulent-boundary-layer velocity profiles
that have been distorted by pressure gradients revealed that the greatest effect on the
local point values of velocity through the velocity profile is in the inner half of the profile.
Therefore, for turbulent boundary layers the parameter A is assumed to have a value
of 1.25 as was the case for the equilibrium flat-plate velocity profiles of reference 22;
and the parameter Ag is an unknown that must be solved for in the solution of equa-
tions (6) to (8). For equilibrium flat-plate flow without heat transfer the value of the
parameter A9 as given in reference 22 is 2.0, It should be noted that the assumed
velocity~profile relation does not give the correct linear variation next to the wall,

The modified Crocco-type temperature-velocity profile relation of reference 18 was
used in the present boundary-layer-prediction method, as given by the following equation:

T T 2 2| Tow - T N 2 4
I _w o Zw(e) e [uNlaw T tw TPr | Slfu Y fu (13)
Tsg Tp Tgs/\U5 Us \Up Tp Z Us Us

The function Z 1is the Karman factor in the modified Spalding-Chi heat-transfer method

of reference 21. The parameter C is a function of the local integrated total-energy and
momentum deficiencies and is an unknown that must be determined in the solution of
equations (6) to (8).

The relationship assumed for the shear distributions across the boundary layer was
obtained by analytically fitting theoretical shear distributions derived (ref. 22) for flat-
plate flow. The form of the analytical shear relation as developed for use in the present
method is given by

)

A correlation of the parameter B was developed and is discussed in detail along with
equation (14) in appendix B. The expression given in equation (14) monotonically
decreases with distance from the wall, and therefore the Ty value is the maximum
shear in the profile. For all but severe pressure gradients the maximum shear occurs
close to the surface and does not deviate a great deal from that for a zero pressure gra-
dient (ref. 24). Therefore, a reasonably accurate shear integral for a pressure gradient
case is obtained even though equation (14) does not give an accurate value of (d7/dy)y
for this situation.
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Auxiliary Relations for Transitional-Boundary-Layer Solution

As was the case for turbulent boundary layers, the solution of equations (6) to (8)
for transitional boundary layers requires the assumption of auxiliary relations for the
local-wall friction coefficient, the local-wall heat transfer, the boundary-layer velocity
profiles, the boundary-layer temperature-vélocity profiles, and the shear distribution
across the boundary layer. These relations are discussed in appendix C.

Analytical Method of Solution

Substitution of the transitional or turbulent auxiliary relations into equations (6)
to (8) produces three ordinary integral differential equations with three unknowns. The
three unknowns consist of the parameter Ag of the velocity profile, the parameter C
of the temperature-velocity profile, and the boundary-layer thickness change. As is the
case for most integral transitional- or turbulent-boundary-layer-prediction methods the
present method requires values of several parameters at the initial station to begin the
solution. The parameters which are required are the momentum thickness, the ratioc of
momentum to boundary-layer thickness, the energy thickness and, in the solutions which
include a transition calculation, the value of the laminar friction coefficient. The
resulting solution of equations (6) to (8) across a body surface element then consists in
obtaining a first approximation of the values of Ag, C, and &9 / 81 downstream of the
element by use of the known parameters at the upstream station. Then, using successive
approximations of the downstream values of the parameters Ag, C, and &y /61 yields
successively better average values over the element of the integral parameters @*ﬂ g,
¢, and the integral parameters of equation (8) are obtained and resubstituted into equa-
tions (6) to (8). This method of successive approximations is continued until two succes-
sive calculations produce a change in the downstream value of 6" of 0.016% or less.

COMPARISONS OF THEORY AND EXPERIMENTAL DATA

The validity of the theoretical prediction procedure was tested by comparisons with
experimental data. These comparisons also provide an indication of the range of appli-
cability of the method since they cover a broad range of boundary conditions corresponding
to a considerable quantity of experimental data. The experimental data were taken from
references 17 and 25 to 29 and are presented in figures 1 to 10 in terms of boundary-layer
velocity profiles and boundary-layer displacement and momentum-~thickness distributions
together with the corresponding theoretical computations. No comparisons between
experimental and theoretical distributions of energy thickness are presented due to a lack
of significant experimental results. The following discussion of these comparisons is
divided into two general categories, axisymmetric and two-dimensional flow.

11




Two-Dimensional Flow

Comparisons between experiment and theory for the boundary-layer development on
flat plates and two~dimensional compression surfaces are presented in figures 1 to 5 for
a range of Mach numbers from 1.73 fo 6.63 and ratios of wall temperature to free-stream
stagnation temperature from 0.265 through adiabatic,

The experimental data of reference 27 presented in figure 1 consist of distributions
of 8, &%, and 6 along a flat plate for free-stream Mach numbers of 1.73, 2.0, and 2.5,
and an adiabatic wall. The computation of the corresponding theoretical distributions of
5, &%, and ¢, involved the use of two assumptions. A value of energy thickness of
0.01524 millimeter was assumed for the initial station, and the values of adiabatic wall
temperature were determined by the following standard relation:

TW _140.896—L -1 (15)
Ts Tﬁ/Tt 5
3

The agreement between theory and experiment shown in figure 1 is within a few percent.

Experimental data from reference 28 and theoretical curves on the boundary-layer
development in the constant-pressure region on a tunnel wall are given in figures 2 and 3
for Mach 3.0 and ratios of wall temperature to free-stream total temperature of 0.45,
(.65, and 0.85, and for Mach 6.0 and ratios of wall temperature to free-stream total tem-
perature of 0.265 and 0.760, respectively. The experimental data of figure 4 were taken
on a two-dimensional compression surface at Mach 6.0 with ratios of wall temperature to
free-stream total temperature of 0.45 and 0.82 (ref. 28). The deviations between theo-
retical and experimental distributions of 6% and ¢ for the flat-plate results of fig-
ures 2 and 3 are within the limits of data accuracy quoted by reference 28.

Because of the high wall curvatures of the Mach 6 two-dimensional isentropic com-
pression surface of reference 28 and the large boundary-layer thicknesses, severe static-
pressure gradients existed across the boundary layer normal to the wall. For the pur-
poses of the present study, the presence of the normal-pressure gradient requires the
experimental 6 and 6 to be defined in a slightly different manner than is usual in
order to eliminate a normal-pressure-gradient contribution to the momentum and dis~
placement thicknesses. The following definitions were assumed for 6 and 6:

* _ 0 pu
8 —S‘O (1 —-F—)-i—u;->dy (16)

0 [ puu, 2
o= [ [ . 20g (17)
0 \pui?  pyu




where pjuy, piuiz, uj, pu, and pu? are based on the same local inviscid static-
pressure distribution across the boundary layer. The subscripted i parameters are
based on inviscid total pressures at the boundary-layer edge. The resuliing 5% and 6
values thus obtained from the experimental data are to a first approximation a measure

of the mass-flow deficiency and momentum deficiency of the boundary layer relative to

the inviscid flow as caused by upstream surface friction losses. These definitions for

5% and 6 are consistent with those of the present theoretical method, which assumes
constant static pressure across the boundary layer. Therefore, in an attempt to elimi-
nate any static-pressure contributions to experimental values of 6" and 9, the slightly
modified definitions of 6% and 6 as given in equations (16) and (17) were used to reduce
the experimental data. Reference 28 presented distributions of wall static pressure and
boundary-layer-edge static pressure along the compression surface. A linear distribution
of static pressure between the wall value and the boundary-layer-edge value was assumed
in the reduction of the experimental data. The comparisons of figure 4 indicate a reason-~
able agreement between experimental and theoretically predicted trends of &, 8%, and 6.

Experimental data from reference 29 are presented in figure 5 for the boundary-
layer development on a cooled flat plate which spanned the tunnel test section. The data
cover a range of Mach number from 6.22 to 6.54 and a range of ratios of wall temperature
to free-stream total temperature from 0.46 to 0.83, as noted in the individual parts of this
figure. From figures 20 and 21 of reference 29 it is estimated that the repeatability of
experimental values of 6 is within approximately +6.5 percent and the repeatability of
experimental values of % is within approximately +15.7 percent. The differences
between the experimental and theoretical distributions of 5% and 6 of figure 5 in most
cases are also within these repeatability limits.

Axisymmetric Flow

Theoretical and experimental data are presented in figures 6 and 7 for the investi-
gation described in reference 17 on the boundary-layer development on a cooled axisym-
metric body of revolution at a free-stream Mach number of 4.0. In general, the test body
up to the survey station consisted of a blunted 10.25° half-angle cone followed by 11.15°
of isentropic compression followed by 6° to 7° of expansion. (See fig. 6.) Experimental
static- and total-pressure surveys were conducted normal to the test body axis at the
344.,5~-millimeter (from cone vertex) axial location for ratios of wall temperature to free-
stream total temperature of 0.2, 0.7, and 0.9. The experimental values of displacement
thickness and momentum thickness were computed from the experimental surveys by
assuming a temperature-velocity profile corresponded to the relation of equation (13).
The theoretical distributions of §, 6*, and 6 presented on figure 6 were generated by
using the present theoretical method along with the assumption that transition from a
laminar to a turbulent boundary layer began at the trips (44.6 millimeters from cone




vertex), Boundary-layer-edge Mach numbers and static pressures along the test body
were determined through use of the blunt body and characteristic theories of refer-
ences 30 to 32. The boundary-layer computation through transition was initiated using
the results from an altered version of the laminar-similarity-type computer solution of
reference 13, No correction for trip losses was included in the computational procedure.
The analytical and experimental results of figure 6 indicate agreement within +6.8 per-
cent for the momentum thickness, within +£5.3 percent for the displacement thickness, and
within +9 percent for the boundary-layer thickness. In general, the present method, with
the provision for nonequilibrium velocity profiles, predicted values of 6 and 5*
slightly more accurately than the initial version used in reference 17; however, substan-
tial improvements in the accuracy of the prediction of boundary-layer thickness § were
obtained by use of the present method since the prediction error for & in reference 17
was approximately -40 percent. This effect is illustrated further by the velocity~
distribution comparisons of figure 7, which indicate close agreement except for a region
adjacent to the surface ranging from 2 to 6 percent of the boundary-layer thickness, where
the laminar sublayer was not predicted.

The values of theoretical and experimental parameters agree very closely (figs. 6
and 7) considering that the boundary-layer-trip losses were neglected in the theoretical
computations. In order to explore this result further, boundary-layer computations for
the temperature ratio of 0.9 case were made for several initial values of 6 and cf,lam‘
These results are presented in figure 8. As a reference, the curve from figure 6(c) for
no=-trip correction is also shown.

In figure 8 the distributions of momentum thickness shown by cases 1 and 2 were
obtained by increasing the initial momentum thickness by 79 and 143 percent, respectively,
over the no-trip correction case, while the laminar friction coefficient assumed at the
beginning of transition was held constant. This drastic increase in initial momentum
thickness resulted in a shift of the axial location of the end of transition from about
180 millimeters for the no-trip correction case, to about 240 millimeters for case 1, and
about 271 millimeters for case 2. The variation of the predicted momentum thickness at
the survey station was only about 2 percent; similar small variations were obtained for
predicted values of displacement and boundary-layer thicknesses at the survey station.
The effect of reducing the friction coefficient (17 percent decrease) at the start of transi-
tion while simultaneously increasing the momentum thickness (143 percent increase) is
shown by case 3, figure 8. For case 3 the end of transition occurred beyond the survey
station and the momentum thickness at the survey station was reduced by 17 percent.

Additional data on the boundary-layer development on axisymmetric bodies are given
in reference 25 for a free-stream Mach number of 5.98 and an adiabatic wall. The test
body in this case consisted of an initial 100 half-angle sharp cone followed by approxi-
mately 25.4° of isentropic compression. Two sets of theoretical curves and experimental
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data from the investigation are shown on figure 9; one set was computed by the present
turbulent boundary-layer-prediction method, and the other set was computed by the same
prediction method but altered by the assumption of equilibrium flat-plate velocity profiles.
For these computations the boundary-layer-edge Mach number distribution was assumed
to be that for the 10° cone case presented in figure 6 of reference 25, and the boundary-
layer-edge static pressures are assumed to correspond to the edge Mach numbers
assumed and the total-pressure recovery through the conical shock. Figure @ shows that
the assumption of flat-plate velocity profiles has only a small effect on 6% and 6 but
considerably underpredicts the boundary-layer thickness 6. The assumption of nonequi-
librium profiles of the present method predicts the boundary-layer thickness and its
development within approximately +14 percent. From the results presented herein and
also in reference 17, it is concluded that the prediction of boundary-~layer growth in either
positive or negative pressure gradients requires a provision for nonequilibrium velocity
profiles in the theoretical method.

Experimental data on another type of axisymmetric body are reported in refer-
ence 26 and presented in figure 10. The experimental data of figures 10(a) and 10(b) were
generated on a body consisting of 431.8 millimeters of open cylinder followed by a
482.2 millimeters of isentropic compression surface which turns the flow 35.6°. These
data were taken at free-stream Mach numbers of 5 and 6 with no wall cooling. The
experimental data of figures 10(c) and 10(d) were generated on cooled bodies consisting
of an open cylinder followed by a compression surface 934 millimeters in length which
turned the flow isentropically by 34.4°. The data of figure 10(c) correspond to Mach 6
and an open-cylinder length of 304.9 millimeters; the data of figure 10(d) correspond to
Mach 8 and a cylinder length of 660.4 millimeters. In figure 10(c) the experimental data
points for boundary-layer thickness connected by the lines indicate the believed reading
accuracy for the experimental boundary-layer thicknesses.

In these experimental investigations boundary-layer surveys (ref. 26) were con-
ducted normal to the wall for static pressure, pitot pressure, and total temperature. In
the data-reduction procedure of reference 26, static pressures across the boundary layer
were assumed to correspond to those computed inviscidly because the measured static
pressure were not sufficiently accurate. Because of the large boundary-layer thicknesses
relative to the axisymmetric body's radius and surface curvature, a significant amount of
static-pressure gradient normal to the body surface is present in the experimental data.
Therefore, in an attempt to eliminate any static-pressure contributions to the experi-
mental 6 and 6 the slightly modified definitions of 6% and 0 as given in egua-
tions (16) and (17) were again used to reduce the experimental data. When the definitions
for the experimental 6% and 6 as given by equations (16) and (17) were used, the pres-
ent theoretical turbulent-boundary-layer method was found to predict trends of the




development of the displacement, momentum, and boundary~-layer thicknesses reasonably
well for all the sample experimental cases (fig. 10).

CONCLUDING REMARKS

In connection with research programs on hypersonic airbreathing propulsion, an
integral method for predicting boundary-layer development in transition and turbulent-
flow regions on two-dimensional or axisymmetric bodies has been developed through use
of the integral-momentum, moment-of-momentum, and energy equations together with
appropriate auxiliary equations. The method has the capability of predicting nonequilib-
rium velocity distributions. It employs some simplifying assumptions, such as flat-plate
friction and heat-transfer coefficients, no provision for a normal-pressure gradient, and
perfect-gas relations; therefore, the method is considered interim in nature.

Extensive comparisons have been made with data covering a wide Mach number
range, cooled and uncooled walls, two-dimensional and axisymmetric bodies with and
without regions of longitudinal-pressure gradient, and a few cases with strong normal~
pressure gradients. The overall conclusion is that the method will predict the displace-
ment, momentum, and boundary-layer thickness of the data within the limits of the exper-
imental accuracy. |

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., June 15, 1971.




APPENDIX A
THEORETICAL DERIVATION OF INTEGRAL FORMS OF GOVERNING EQUATIONS

In the derivation of the integral forms of the governing boundary-layer equations,

consider the following equations:

Continuity equation:

dpu , 3pv  lou dr _ (A1)

3s 9y r B8s

Momentum equation:

L . L (A2)

pu-é-g-'_pv-é;: ds 8y

Multiply equation (A1) by (u5 - u) to obtain

(u5 - u)a—&u + (u5 - u>§p_v + lﬂ‘i(ua - u>-§—£ =0 (43)

as ay r

Substract equation (A2) from equation (A3) to obtain

0 ]
(\3.5—u)—af—q-pu—-li+<u5—u)-a-)ﬁv—-pvi'3-13+£€9(u(3-u>2=-?-£-—a—Z (A4)

ay ay r

du
9 9 ) Ior o8p o7
...__pu(u _u> +..._...pv<u - > - pu —— u(u - —— el e
9s o ] 9y 0 ds Py )I' 9s 9s 9y

or

ap

2 98| pu u b} pu u 2 76 0

P — 1 - =\ + —lpviu,. =~ - — —_— 2 —] - J—
60 as p5u5< u@) ayE) < o} ] + p5u6< ué> <u§ 9s + u5P5 38) pu Py

S (45)
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APPENDIX A — Continued

But with isentropic flow at the boundary-layer edge,

ou
9p 6
55~ P0"0 g (49

Substitution of equation (A6) into equation (A5) and integrating with respect to y gives,
after rearrangement, the integral-momentum equation

*

= du dp T c
.@‘ﬂ..}.@ 6 __Q.,.l_é.,.lgz = 1 w = £ (A7)
dx us dx Pydx rdx/ cosw pﬁuéz 2 cos w
where
[
— pv{us - uldy =0 A8
0 8yp ( b ) Y ( )
~0 pu u
5 1- gy =0 (A9)
0 Ps4s Up
56 . P .>dy= &* (A10)
0 Pgug,
and
ds = —9% (A11)

where w is the surface angle relative to the axis of symmetry in axisymmetric flow
and the angle of the surface relative to the initial station surface plane in two-dimensional

flow.

Multiply equations (A3) and (Al) by y to obtain

apu apv  Ipuy or
rlug = Ul——= + y[ug = W—or + =—2(Us ~ U} =0 Al2
3<6 )85 y(6 )By T (5 )BS ( )
u bu_ %, 07
YPU S VPV o = Y g T 5y (A13)
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APPENDIX A — Continued

Subtracting equation (A13) from equation (A12) and rearranging gives

-pv(u5 - u) +-§S-Erpu(u5 - ui] +%%p"(‘46 - uﬂ

du

9 I8r__ 9 9T
- puy —— + puy(up - Wz ==y = (A14)

T 9s 98 my _§
Substitution of equations (A6) and (A11) into equation (A14) and integrating with respect to

y gives, after rearrangement,

-1 §5 v(u -u)d +—q-§6pu (u -u)d ———§ puy d 193516 uy(uy - u)d;
cOSWOp(g Vg, Pyl - ujdy yyrdXOpy(5 )dy
2 du )
) ) 1 S‘ T
= —— e
2 pauédx cos w Oyay v
(A15)
where
% 3
§0 -a—S;E’Pv(uG - ui]dy =0 (A16)
Through use of the continuity equation,
6 y
dg pu dy )
o )
1 ) _ } 0 I drS‘ } gY
Py gO Pv(ué u>dy = - (u5 u)T dy " Fax o [(uﬁ ) . pudyldy (A17)
0
or
5‘5 9.9 u)\ Yo Pe¥% 9| y
viug - u)ldy = -psu-“5 1-— dL
coswop(6 oy = -pgus < u5) dx 5

dpsu Ipsu
- w20 +_§__§9_1:>

5:[(1-@

dx r dx
-Puzﬁgg ' 1-L) P 4 (A18)
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APPENDIX A — Continued

Substitution of equation (A18) into equation (A15) gives, after rearrangement,

1 252
puy 4w\ y ¥ a2 d | (T puy [ w\yy
us) 6  ax 070 7 ax|Jg pgugd\ up O

y/d
dS‘ pu a7

psus  © dosux Ipsu
+ pgug2o? _u\_Jo Pa¥s ¥ 4 ugot{ 00, Pols ar
u(;/ dx o dx r dx

/0 1
g P8 g3laY s pag26 90 (1 m) P gy
0 Pgug 0| © dx Jg ug/psugd 0

du 1 1
2 M5 puy .y 2,21 dr puy ul\.y
"‘Oéuﬁé __._S‘O d._..;.péu6 bs) .____._]_-.Jgd_a_

pgugd © T dx Jg Pgupd
1
_-_6_2_p EEQ_ 5 y_.?_zd_y.
2 "0°07Gx " cos w 5,y ©
0 9]

Dividing through by

262 (T P i w\gy

and rearranging gives

4]
/0 pu 43lay
a¥la
0 Psls O O dlog, 6
+
I T 1

\ / ‘ P B\ Y

1
-4
[oEe Pty pando L
dx,

(A19)

(Equation continued on next page)
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APPENDIX A — Continued

1 llﬁdl
1-2| 2 43 0q% 0
. 0 Pougd 0 dlogeus 1 o ° (A20)
dx 2
puy i _u\q¥ Psls dcos w pl puy (1 ——)dz
0 p5u56 U-6 0 0 p5u66 Ug/ o

The relationship assumed for the shear distribution across the boundary layer and dis-
cussed in detail in appendix B is given by

1. (X)B (A21)

Substitution of equation (A21) into equation (A20) and rearrangement of the results gives
the integral moment-of-momentum equation:

5
2._¢D (422)
o1
where
1 Bcf ax 9 y
D=z - - d loge psus? - d loge oﬁ( -—-6->dg
5
26(B + 1)cos wS L AR R P 4

yol[( - —&5>d Sj/ p‘;’gé d%dz

o
- - (d logg psug +1Idlogg r)

0 Peusd\ s/ ©
1 / )
y/0
-u Pa_4YlgY 5 _puy
yo [( ‘15>§0 Pols d 5:}d 5 ( 0 95u65 ay d loge ug
X - -Idlogyr - (423)
_Puy [ _u\4¥ 25‘1__9_‘11_1_ a¥
0 Pgug®\ ug/ 0 0 Pgus®\ up O
The energy equation, as previously noted in equation (3), is
8h 8h __ 9p %u @& (K 8h
pu as+pvay_uas+76y+8y<-6;ay> (A24)
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APPENDIX A — Continued
Stagnation enthalpy is given by

2

ht =h +P.2_ (A25)

and thus,

ds 8s o8
(A26)
ah_ %Mt | fu
9y 9y oy
Substitution of equations (A26) into equation (A24) gives
oh oh 2}
;c:u—-:c---pu2§E+pv——E—pvu—a—llzu—g+'T—"’-E+-2--—I§--a—}i (A27)
o8 9s dy ay as 9y 9y\Cp ay
Multiply equation (A1) by <ht,5 - ht> to obtain
apu opv pul or
h -h)_—+(h -h>—+(h -h)-—-———-=0 A28
(t,a s T \Pto - hy5 =+ (Beo - hySE o0 (A28)

Subtracting equation (A27) from equation (A28) gives

\3pu apv pul 8r dhy 2 du ohy au
hi 5 « hy)—== <h —h)—-——— (h -h)——-—-—- U — + puf — - pv —= + pvu —
( t,0 ‘Q o5 T\ EO T AYHT T T T 5 Pls TP s F oy P oy

3
v

Substitution of equation (A2) into equation (A29) (for terms 5 and 7) gives, after
rearrangement,

Bbou(ht,@ - bt)] . 3[PV(ht,5 - ht)] U ap aT (ht 5 - ht>£1_1_1_c£ _ u—a—E _.8u_ 3 <K ah)

—=+u—+
9s dy s dy r ds s 8y ay
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APPENDIX A — Concluded

Integrating equation (A30) with respectto y gives

6 )
d g / I dr \ e (
_ hy 5 - ht|dy + = — hi 5 -~ ht)dy = (A31)
as Jo P8 9 + ¥ 55 opu<t’5 t)9y = oy )
where
~y ( . h
gpvihy s ~ hy|
\ t5 = Dt dy = 0
9y
._,0
) (432)
)
M dy =0
8y
0
~
0
8 (K dh K 8h o
—= —\dy = [ — {A33)
-0
and the heat transfer at the wall is
_[K &h
Qw = <'c—p 5§>W (A34)
Substituting
5
: he = -
pu / t,6 ht
@ = : dy (A35)
§0 Pels\ht 5 - hw>

and equation (A11) into equation (A31) and rearranging yields the integral energy equation:

I
s @ loge[p sus(ht. 5 - hw)r}
dx dx

= dw (436)

) cos wp5u6<ht,5 - hw)
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APPENDIX B
SHEAR STRESS INTEGRAL

The two~dimensional, compressible, turbulent-boundary-layer equations for steady
mean flow along a flat plate were integrated numerically from the wall to various posi-
tions within the boundary layer, yielding the turbulent-shear-stress profile, and some
sample results are presented in reference 13. An equation of the following form was
found to give an analytical fit to the sample shear distributions presented in reference 13:

- (X)B (B1)

An analytical correlation of the parameter B for adiabatic equilibrium flat-plate turbu-
lent boundary layers has been developed in such a manner as to be applicable to nonequi-
librium boundary layers. This correlation was accomplished in the following manner.

For adiabatic equilibrium flat-plate flow the parameter Ag of the turbulent-
velocity-profile relation of equation (12) has a constant value of 2.0. Therefore, substitu-
tion of the turbulent auxiliary relationships into equations (6) to (8) and assuming the
velocity-profile parameter Ag to be 2.0 produces a set of three integral differential
equations with three unknowns, B, C, and 0. The resulting integral differential equa~
tions were then solved for a range of boundary-layer-edge Mach numbers and Reynolds
numbers Rg. The solutions for the parameter B revealed that an increase in the value
of B causes an increase in the entrainment of free-stream mass flow to the boundary
layer. The increase in mass entrainment with an increase in the value of B suggested
that the parameter B should be correlated with a characteristic of the velocity profile
near the boundary-layer edge. The following expression is therefore obtained for the
correlation of B:

B

= (.08534 log_ E + 0.7955 B2
B+1 ge (B2)
where
)
/l qu
T u
% 0
\Té dy‘
2 \~ 0
E-= M@ (B3)
a¥y
® W_o.9s
Js




APPENDIX B — Concluded

It is assumed that resulting correlation can also be applied in the computation of transi-
tional and nonequilibrium-type boundary layers. The reasoning on which this assump-
tion is based resulted from a comparison of nonequilibrium-type velocity profiles in the
constant-pressure region downstream of a shock-boundary-layer interaction with those
for equilibrium flow. This comparison reveals a strong similarity in shape between the
nonequilibrium velocity profiles and the equilibrium velocity profiles for much smaller
Reynolds numbers. Based on this observation as to the relative similarity of the
velocity-profile shapes, the assumption was made that the shear distributions would also
be similar in shape. Thus, it is assumed that the correlation of the parameter B in
terms of a characteristic of the velocity profile, as has been done for adiabatic equilib-
rium flat-plate turbulent boundary layers (egs. (B2) and (B3)), can be applied to transi-
tional and nonequilibrium turbulent boundary layers.
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APPENDIX C

AUXILIARY RELATIONS FOR TRANSITIONAL
BOUNDARY-LAYER SOLUTION

On page 434 of reference 19, the variation of the local-wall friction coefficient
through the transition region is expressed by

R, .
_ i, crit
%t = Ctturb " TR, (© turb = ¢ 1am) (C1)

crit
The Reynolds numbers Rl,crit and R; are based on the length of boundary-layer
development. The subscript crit refers to the point at which transition is assumed to
begin. The Reynolds number based on momentum thickness is used to compute the local-
friction coefficient since even in a zero-pressure-gradient region the friction coefficient
based on length of boundary-layer development is not valid after a pressure gradient.
Also, one main problem exists in the use of equation (C1) to represent the distribution of
the friction coefficient through the transition region. This problem results from the fact
that in a pressure gradient the value of the ratio of Rl,crit and R; can change dras-
tically and cause equation (C1) to produce erroneous transition friction coefficients (pos-
sibly less than the corresponding local laminar friction coefficient based on Rg). To
eliminate this problem the following relationship is assumed for the distribution of the
friction coefficient through the transition region:

St turb|_ (% turb " °f,1am)
— - 2 ) 5
Cftr = Cf,turb Ry Rg ¢t turb (€2)
’ crit
The method of scaling the value of (c fturb = Cf1 am) expressed in equation (C2)
? ’ crit

produces a reasonable distribution of friction coefficient through the transition region.

As is done in the turbulent-boundary-layer region, the heat transfer in the transi-
tion region is computed by using the modified Spalding-Chi heat-transfer method for tur-
bulent flow (ref. 21). This relation overpredicts the heat transfer in the transition region
but was selected as a matter of convenience since the total heat load in the transition
region is small for practical configurations.

The velocity-profile relation of equation (12) which was used for the turbulent region
was also assumed to apply in the transitional-boundary-layer region. Examination of
experimental laminar- and transitional-boundary-layer velocity profiles revealed that the
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APPENDIX C — Continued

profiles are steeper than those of turbulent flow. An increase in the value of Aj pro-
duces a similar effect in equation (12). A value of Aj of 2.5 used in equation (12)
resulted in predicted velocity profiles similar in shape to those of a laminar boundary
layer. Consequently, the parameter A1 was allowed to vary through the transition
region in the manner given by the following equation:

1.25(c -cC
A= ( f,turb f,tr) +1.25 (C3)

(cf ,turb ~ cf,lam>crit

The temperature-velocity profile relation of equation (13) for turbulent flow was
altered for use in the transitional-boundary-layer region in a manner such that the slope
of the temperature~velocity profile at the body surface is between that for a turbulent
boundary layer and that for a laminar boundary layer. Therefore, through transition the
slope of the temperature-velocity profile at the surface is assumed to be given by

<:r_§.‘_”.> Tw 0.725
) T Ts |
Fo | Chtr ~ Ctturb 0/turb -0
(o, tarb = ¢ lam) . Z
T T T T
-1 - o253 = --f‘-"’-————o';% (C4)
6 lam 6 o turb 6

where Z is the Karman factor of reference 21. In the transition region, equation (13)
for the temperature-velocity profile relation becomes

T T 2 2 2 4
..’I_‘_z_y_.{. l-ﬂi + A F+C TR (Cﬁ)
Ts Tp Ts/\Us Us \Ug Ug ug

Through the transitional-boundary-layer region the shear distribution across the
boundary layer is assumed to be given by equation (14) for lack of a more appropriate
expression. Thus, numerical values of several parameters in the transition region are
based on weighted values of friction coefficients and others are assumed to be the same
as for turbulent flow, as discussed. This procedure is somewhat arbitrary but does pro-
vide a systematic method for computing a finite transition length, which is the primary
objective in the present method.
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APPENDIX C — Concluded

In summary the solution of equations (6) to (8) for a transitional boundary layer
differs from that for the turbulent boundary layer only in that the following auxiliary
relations are used; local-wall friction coefficient (eq. (C2)), boundary-layer velocity
profile (eq. (12) and eq. (C3)), and boundary-layer temperature-~velocity profile (eq. (C5)).
As was the case for a turbulent boundary layer, three integral differential equations are
generated with three unknowns; A2, C, and the boundary-layer thickness change.
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Figure 5.- Boundary-layer development on a flat plate.
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Figure 5.- Continued.
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